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Introduction: 
Uncompensated through-slice magnetic field gradients cause extensive signal dropouts in full k-space rectangular-scan 
EPI due to the long interval before TE is reached.  Techniques to fix this problem include z-shimming [1-2] and tailored 
RF pulses to alter the phase profile through the slice [3].  Herein, we propose another method, which in its simplest form 
does not need a modified EPI pulse sequence or any time penalty, just a new reconstruction algorithm.  This method can 
also be used in conjunction with other techniques, since it only requires a magnetic field map and new software. 
The Signal-Magnetization Relationship and non-Fourier Reconstruction: 
The basic problem is that the relationship between the measured signal and the magnetization is no longer precisely the 
Fourier transform.  If we abstract out the x - kx direction as being acquired too rapidly for dephasing to matter, then the 

signal at time t  after excitation can be modeled as S(t)∝ M(y,z)e
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M (y,z) is the post-RF transverse magnetization density (at t = 0), FOV is the field-of-view (in the y-direction), h is the 
slice thickness, ky(t) is the phase-encoding readout, kz (t) is the integral of any z-shimming gradients, and w(y) is γ times 

the spatially-dependent through-slice magnetic field gradient.  Idealizing further that the magnetization profile in the z-

direction is rectangular, the signal model becomes S(t)∝ M(y)e−R2
* (y)te
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w(y)t + kz (t)( )[ ]dy , where 

sinc(x) ≡ sin(x)/ x .  If w(y)=0=kz(t), then this model is the usual Fourier relation between S(t) and M(y).  When kz(t)≡0, at 

locations y where w(y)h>≈2π /TE , the dephasing is such that sinc h

2
w(y)TE[ ]≈ 0  and virtually no signal is received from 

such values of y in the vicinity of  t=TE; normal Fourier reconstruction results in nearly total signal dropout in these 
locations.  However, if the readout starts soon enough after excitation, the early part of the data will contain some signal 

from the dropout locations at nonzero values of ky (while w(y)ht <≈1.5π , say).  The non-Fourier reconstruction model we 

propose is thus to write the model for the image I(y) as S(t)∝ I(y)e
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w(y)t + kz (t)( )[ ]dy , and then invert 

this linear integral equation numerically to solve for I(y); solving this equation requires having a Bz field map, so that w(y) 

is known.  The discretization is Sm = e
−iky (tm ) yn sinc h
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temporal index.  This is a system of linear equations for the image vector [In] given the data vector [Sm], and can be solved 
using the singular value decomposition (among many possible methods).  As mentioned above, the speed of acquisition in 
the kx direction means that normal FFT reconstruction can be used for the x - kx  inversion; therefore, although the matrix 
is dense, it can be solved quickly since it will involve (typically) only 64-128 unknown values.  Once the subject- and 
orientation-specific gradient field map w(x, y) = γ ∂Bz (x, y,z) ∂z

z=0
 is available, the SVD for each slice and each x can be 

precomputed, and the overall reconstruction speed for a long imaging run of EPI data will be very fast. 
Preliminary Results and Discussion: 
Simulated data were generated that correspond to a realistic EPI acquisition: 27 ms readout window starting at 6 ms after 
the center of the slice excitation RF; 64 data points in ky with a 240 mm FOV; localized 100 Hz through-slice frequency 
change.  The results show that knowing w(y) to within 10% provides an accurate image reconstruction. 

Using a nonzero compensating kz(t) for the second half of the acquisition provides a way to gain a second partial 
acquisition of data from “bad” regions.  We keep Gz=0 until t=TE; for t>TE, a constant Gz is turned on to oppose w(y).   
Simulations show that this type of compensation, coupled with 
non-Fourier reconstruction, is less sensitive to errors in the 
estimated w(y) and to noise.  Further work is planned to estimate 
the sensitivity to R2

*  changes and global field offsets, determine 
the PSF, choose the kz(t) compensation path optimally, &c. 
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